Efficient nonlinear solvers for Laplace-Beltrami smoothing of three-dimensional unstructured grids
نویسندگان
چکیده
The Laplace-Beltrami system of nonlinear, elliptic, partial differential equations has utility in the generation of computational grids on complex and highly curved geometry. Discretization of this system using the finite element method accommodates unstructured grids, but generates a large, sparse, ill-conditioned system of nonlinear discrete equations. The use of the Laplace-Beltrami approach, particularly in large-scale applications, has been limited by the scalability and efficiency of solvers. This paper addresses this limitation by developing two nonlinear solvers based on the Jacobian-Free Newton-Krylov (JFNK) methodology. A key feature of these methods is that the Jacobian is not formed explicitly for use by the underlying linear solver. Iterative linear solvers such as the Generalized Minimal RESidual (GMRES) method do not technically require the stand-alone Jacobian;
منابع مشابه
Heat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...
متن کاملLaplace-Beltrami operator on Digital Curves
Many problems in image analysis, digital processing and shape optimization are expressed as variational problems and involve the discritization of laplacians. Indeed, PDEs containing Laplace-Beltrami operator arise in surface fairing, mesh smoothing, mesh parametrization, remeshing, feature extraction, shape matching, etc. The discretization of the laplace-Beltrami operator has been widely stud...
متن کاملHeat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions Submitted to IEEE Transactions on Medical Imaging
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...
متن کاملVoronoi cell nite di erence method for the di usion operator on arbitrary unstructured grids
Voronoi cells and the notion of natural neighbours are used to develop a nite di erence method for the di usion operator on arbitrary unstructured grids. Natural neighbours are based on the Voronoi diagram, which partitions space into closest-point regions. The Sibson and the Laplace (non-Sibsonian) interpolants which are based on natural neighbours have shown promise within a Galerkin framewor...
متن کاملA Multigrid Method for Nonlinear Unstructured Finite Element Elliptic Equations
This paper presents an application of the element agglomeration-based coarsening procedure (agglomeration AMGe) proposed in [10], to build the components of a multigrid method for solving nonlinear finite element elliptic equations on general unstructured meshes. The agglomeration-based AMGe offers the ability to define coarse elements and element matrices, provided access to elements and eleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 55 شماره
صفحات -
تاریخ انتشار 2008